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SUMMARY

An adaptive, wavelet-based, multiscale finite-volume scheme is developed and employed to investigate
applications in the simulation of water waves. Firstly, two one-dimensional, strictly hyperbolic cases are
investigated: shallow water and Euler equations. These are followed by two investigations using a finite-
volume formulation of Madsen and Sørensen’s Boussinesq equations. Converged results were obtained in
all cases, which demonstrate that the adaptive grid scheme is significantly faster than that on a uniform
grid. In some cases, one-seventh of the number of cells is required to obtain the same accuracy as that
of the uniform grid. Issues of stability are discussed in the context of the particular problems modelled
here with the Boussinesq equations, related to discretization of the high-order spatial derivatives on a
non-uniform grid. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many problems are encountered in engineering where fluid flow with a free surface is an impor-
tant feature. These include wave loading and run-up on coastal and offshore structures such as
breakwaters and offshore platforms; on land, fluvial problems and land-based hydraulic structures;
bubbly and multi-phase flow in pipes; groundwater flow. These problems are often difficult to
solve as the position of the free surface is not known in advance and must be determined as the
simulation proceeds.

Free-surface flow and in particular the behaviour of surface waves has been studied for many
years [1] and a variety of numerical methods have been developed. Numerical methods based on
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linear wave theory using potential flow have a long history and have found considerable use in
industry. However, linear wave theory assumes an infinitesimal wave height and correspondingly
small particle velocities. For engineering design purposes, the most important environmental cases
are those featuring large, steep, non-linear waves, for which the linear theory is inapplicable.
One approach to account for the non-linearity is to perform a Stokes perturbation expansion and
separate the wave into first-, second- and higher-order terms. An alternative approach is to assume
that the waves are fully non-linear. The fluid can then be modelled either by using a velocity
potential in an interface-tracking method or by solving the Euler and Navier–Stokes equations.
This paper is directed towards development of the methodology for solving the Euler equations
using a finite-volume scheme on a wavelet-based adaptive grid.

Adaptive grids are useful in fluid dynamics as problems typically exhibit a wide variety of
spatial scales. The solution may vary rapidly in some regions and slowly in others. The accuracy
of a computational scheme depends on a discretization at a resolution high enough to represent the
detailed features of the solution. Under such conditions, a uniform fine discretization is impractical
and inefficient. It is computationally more effective to employ an adaptive grid so that maximal
accuracy is obtained in the regions varying most rapidly through use of smaller-sized cells, while in
the regions where the solution varies more slowly, larger cells can be used. An arbitrary accuracy
can thus be obtained for a lower computational work load than for a uniform discretization.

Wavelets, traditionally used in applications such as signal processing and image compression,
have become an important tool in numerical computation. Cohen et al. [2] and Dahmen [3, 4]
give recent overviews of their applications. Since wavelets are series of scaled and dilated basis
functions, they can represent functions at different levels of resolution and hence can be used to
define an adaptive grid. Just as with modern image compression techniques, detail below a certain
threshold can be discarded so that the storage requirement is reduced. As fewer cells or elements
are required, the computational burden for the solution method is also reduced. There has been
a great deal of work in the area of such adaptive methods, originally with a particular emphasis
on elliptical equations. As Dahlke et al. [5] suggest, it is with adaptivity that the most immediate
potential benefit can be found with regard to wavelet discretizations.

An application of wavelet-based discretizations in modelling continuum problems is the multi-
scale finite-volume method (finite/boundary element and finite difference applications also exist:
Wavelet-Galerkin, see e.g. Amaratunga et al. [6] and wavelet collocation methods, Bertoluzza [7]).
Multiscale finite-volume schemes were first reported by Harten [8, 9]. The numerical solution is
expressed as a multiresolution representation comprising a coarse mesh and wavelet coefficients
on a series of nested grids. Wavelet coefficients were shown in [9] to indicate the local smoothness
of the solution, thus acting as an error indicator. The scheme is faster than a given finite-volume
scheme on a uniform fine mesh, as the flux is only evaluated on the finest grid in regions of high
gradient; elsewhere it is approximated at coarser scales. A two-dimensional implementation was
produced by Bihari and Harten [10]. While this particular method accelerates a given finite-volume
scheme, Cohen et al. [11] note that it is not truly adaptive. The speed gain is limited by the
fact that the evolution stage, where the solution is updated at the next time step as determined
by the difference scheme, takes place on the finest grid level. The solution is not computed in a
compressed form and so the computation time and storage requirements remain proportional to
the size of the uniform grid at the finest level.

Cohen et al. [11] go on to describe a fully adaptive scheme where the computational cost of
a time step and the memory storage requirement are both proportional to the number of wavelet
coefficients used to describe the solution, providing an error analysis for the scheme. Cohen
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et al. [12], by constructing a multiresolution scheme using triangles, have also shown that it is not
necessary to perform the computation on a cartesian grid. Bramkamp et al. [13] used parametric
meshes to map grid cells to splines enabling them to discretize the fluid surrounding an aerofoil.
The scheme has also been implemented to model cavitation and shock–bubble interactions by
Andreae et al. [14]. Müller [15] presents an adaptive multiscale scheme in great detail and describes
an implementation, reporting good performance.

Another commonly used way to incorporate grid adaptivity is through adaptive quadtree grids,
such as used by Greaves and Borthwick [16], Ham et al. [17] and Wang et al. [18]. These partition
the domain in a hierarchical grid, storing the cell data in a tree-based structure. While the resulting
grids appear similar to those obtained through adaptive multiscale schemes, it will be seen in
Section 2 that the use of the multiscale wavelet transform means that the process of generating the
grids is very different, working with the multiscale wavelet transform of the data. The difference is
to some degree analogous to working in the wave number rather than the spatial domain using the
Fourier transform; while both representations are equivalent, it will be seen that there are particular
advantages to working on the transformed data.

In considering the application of such a multiscale method to hydrodynamics, a major step
is to demonstrate its viability in one dimension. This paper describes how a scheme based on
Müller’s work [15] has been implemented for the solution of various computational problems with
a view to extending it to free-surface flow modelling in two and three dimensions. Two strictly
hyperbolic cases are first investigated: the dam-break problem using the shallow water equations,
and the interacting blast-wave problem of Colella and Woodward [19]. The solutions to these two
problems feature prominent shock waves as well as smooth regions and as such are well suited
to an adaptive grid approach. Two further cases are then investigated in one dimension: solitary-
wave reflection from a wall and propagation over a steep step. The latter cases are modelled
using a formulation of the Boussinesq equations that features a hyperbolic stage followed by an
elliptic stage. In many previous finite-volume solutions to the Boussinesq equations a uniform
grid has been used. This is because, despite the strong localization of solitary-wave solutions, the
high-order derivatives make non-uniform-grid calculations difficult; larger computational stencils
must be used, which can be difficult to formulate and increase the bandwidth of the resulting
system of equations. The incompressible Euler equations will be solved in two dimensions in the
next stage of work. The objective of the present studies is to investigate some of the issues that
could arise in extending the described approach to the modelling of a wide class of free-surface
flow problems in two and three dimensions, based on solving the incompressible Euler equations.
In such a model, when one wishes to ensure pressure–velocity coupling, an approach such as
the SIMPLE algorithm must be used, involving the solution of an elliptic equation. One of the
contributions of this article, therefore, is to explore the viability of elliptic corrections using the
multiscale finite-volume scheme, originally derived for hyperbolic conservation-laws.

The multiscale finite-volume scheme is described in Section 2 and results for the four test
cases are presented in Section 3. Section 4 presents some conclusions and some implications for
future work.

2. MULTISCALE FINITE-VOLUME SCHEME

In this scheme the grid, upon which the finite-volume flux calculations are performed, is adapted at
each time step using criteria from a wavelet-transformed representation of the solution. The process

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:877–903
DOI: 10.1002/fld



880 C. W. SMITH, J. ZANG AND R. EATOCK TAYLOR

can be divided into five stages, which are explored in more detail in the following subsections.
These are: the multiscale transform; thresholding of details; prediction of the grid at the next time
step; inverse multiscale transform; calculation of the fluxes and time integration.

2.1. The multiscale transform

The multiscale transform described in this section is first introduced for a general function q(x)
defined along the axis Ox , where x is suitably non-dimensionalized. It is later applied to the system
of conservation laws, in effect the values of the conserved variables at a particular time step. The
function is decomposed into wavelet bases, leading to a low resolution, coarse approximation and
a succession of ‘details’ at increasingly finer levels. These details represent the local deviation
from the coarse scale average. It will be seen below that these wavelets possess several properties
that make it useful to perform such a decomposition.

We can consider the one-dimensional domain [0,1], over which there is a hierarchical series of
nested grids, each created from uniform dyadic partitioning of the previous grid. Introducing j to
denote the partitioning level, it is clear that on a such dyadic grid there are 2 j cells. Thus each
cell, Vj,k , where k=0, . . . ,2 j −1, is of size |Vj,k |=2− j . On these grids, the box function can be
introduced:

�̃ j,k(x) =
{|Vj,k |−1, x ∈Vj,k

0, x /∈Vj,k

(1)

=
{
2 j , x ∈2− j [k,k+1]
0, x /∈2− j [k,k+1]

(2)

The box function is L1-normalized with respect to [0,1]. The tilde is present to distinguish between
these functions and the L∞-normalized counterpart that is to be introduced. This function can be
scaled and translated using j and k, and can cover the whole of the domain [0,1] at each level j .

As shown in Figure 1(a), a box function at scale level j can be expressed as a linear combination
of box functions at level j+1. This leads to the relation

�̃ j,k = 1
2 (�̃ j+1,2k+�̃ j+1,2k+1) (3)

The box wavelet, �̃, shown in Figure 1(b), can now be introduced. It is defined as

�̃ j,k = 1
2 (�̃ j+1,2k−�̃ j+1,2k+1) (4)

Combining Equations (3) and (4) leads to the two-scale relations

�̃ j+1,2k = 1
2 (�̃ j,k+�̃ j,k)

�̃ j+1,2k+1 = 1
2 (�̃ j,k−�̃ j,k)

(5)

An alternative basis would be that of the Haar wavelet, an L2-normalized counterpart to the
box wavelet in Equation (4) that produces an orthogonal wavelet transform. However, the Haar
wavelet is the only wavelet both orthogonal and symmetrical. An alternative is to use biorthogonal
wavelets, where the orthogonality criterion is relaxed. These allow wavelets to be constructed with
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(a)

(b)

Figure 1. Box function and box wavelet can be constructed from adjacent, high-resolution box functions.

a greater number of vanishing moments while maintaining symmetry (see, for example, [20]).
Such a biorthogonal wavelet basis is constructed by introducing the functions � and �:

� j,k = 2− j �̃ j,k

� j,k = 2− j �̃ j,k

(6)

Compared with the L1-normalized box function and box wavelet, � and � are L∞-normalized.
As result,

∫ 1

0
� j,k�̃ j,k′ dx = �k,k′

∫ 1

0
� j,k�̃ j ′,k′ dx = �k,k′� j, j ′

(7)

where �m,n is the Kronecker delta function.
Using these functions introduced in Equation (6) and the biorthogonality shown in Equation (7),

an arbitrary function, q , can be projected onto the space of functions piecewise constant over a
series of cells, each of size 2− j . This representation, q j , is given by

q j (x)=
2 j−1∑
k=0

∫ 1

0
q�̃ j,k(x

′)dx ′� j,k(x) (8)
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suggesting approximation coefficients q j,k :

q j,k =
∫ 1

0
q(x)�̃ j,k(x)dx (9)

Similarly, the function q can be projected onto the wavelet basis, �̃ j , leading to coefficients known
as details, d:

d j,k =
∫ 1

0
q(x) �̃ j,k(x)dx (10)

For the individual coefficients, two-scale relations similar to Equations (3)–(5) can be found:

q j,k = 1
2 (q j+1,2k+q j+1,2k+1)

d j,k = 1
2 (q j+1,2k−q j+1,2k+1)

q j+1,2k = 1
2 (q j,k+d j,k)

q j+1,2k+1 = 1
2 (q j,k−d j,k)

(11)

Thus combining Equations (9)–(11), and relations (3)–(6), a change of basis can be effected for
q j , using the approximation coefficients q j,k and details, d j,k :

q j+1=
2 j+1−1∑
k=0

q j+1,k� j+1,k =
2 j−1∑
k=0

q j,k� j,k+
2 j−1∑
k=0

d j,k� j,k (12)

Therefore a representation of q at finer scales can be obtained by successively adding detail
coefficients multiplied by the oscillatory wavelet functions. In the multiscale scheme the function
q approximated at level L is first decomposed into an approximation at level 0, the lowest level
of discretization, and a series of details. This decomposition is illustrated by

qL → qL−1 → . . . → q j → . . . → q1 → q0

↘ ↘ ↘ ↘ ↘ ↘
dL−1 . . . d j . . . d1 d0

The function approximated at level L is decomposed into a coarser approximation at level L−1
plus a series of details, dL−1. Coarser approximations are decomposed further into coarser still
approximations, with corresponding detail coefficients, until the approximation at level 0 is reached.

While this article only considers one-dimensional problems, it is straightforward to extend the
decomposition outlined above to higher dimensions through tensor products of the one-dimensional
wavelets. This results in three wavelet functions, corresponding to detail in both grid directions as
well as the diagonal.

2.2. Thresholding of details

The detail coefficients combined with the coarse approximation of the decomposed function merely
provide an alternative representation, consisting of exactly the same information expressed in a
different manner. However, one can show that the magnitudes of the detail coefficients are closely
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related to the local smoothness of function q by rewriting Equation (10), expanding the function
q(x) as a Taylor series about point x ′, the midpoint of the grid cell corresponding to d j,k :

d j,k =
∫ 1

0
q(x)�̃ j,k(x)dx=

∫ 1

0

(
∞∑

m=0

q(m)(x ′)
m! (x−x ′)m

)
�̃ j,k dx (13)

From Equations (2) and (4), ∫ 1

0
�̃dx=0 (14)

and, since the wavelet functions are zero away from x= x ′, the following simplification can be
made:

d j,k =
∫
S j,k

(x−x ′)q(1)�̃ j,k dx (15)

where the inner product integration takes place over the wavelet’s support S j,k defined as the
non-zero region of � j,k . Higher derivatives are neglected since S j,k �1. Hölder’s inequality, a
generalization of that of Schwartz, can now be applied:∣∣∣∣

∫
f (x)g(x)dx

∣∣∣∣�
∫

| f (x)g(x)|dx�
(∫

| f (x)|n dx
)1/n(∫

|g(x)|p dx
)1/p

(16)

where 1/n+1/p=1. Since the box wavelets, �̃ j,k are L1-normalized, ‖�̃ j,k‖L1 =1, and taking
the cell size to be 2− j , the following inequality holds:

|d j,k | � ‖q(1)(x−x ′)‖L∞(S j,k)

� C2− j‖q(1)‖L∞(S j,k)

(17)

where C is a constant. Thus, the magnitude of the detail coefficient is proportional to the gradient
of q . Details falling below a predefined value, �, can therefore be discarded as they do not have
a significant effect on the wavelet approximation to the function. By discarding such details, the
function q is compressed, in terms of data, and the cell averages are an adapted grid representation
of q .

The threshold, �, is not just an adjustable quantity that must be tuned to achieve an overall
accuracy for each different problem; it can be used specifically to set an error bound for the
adaptive grid discretization. In order to do this one must first consider an error tolerance, tol,
allowable for the solution, and thereby determine the required number of levels of refinement, L ,
required so that the overall error is within the allowed range; i.e.

‖qnL − q̃n‖�tol (18)

where qnL is the solution to the adaptive scheme at time step n and q̃n is the exact solution at that
time. To proceed with some analysis of the error in the scheme it is convenient to separate it into
the discretization error and the perturbation error. The discretization error is defined as the error
that would be present in what can be called the reference finite-volume computation, i.e. one that
used a uniform grid. Thus, if the reference finite-volume scheme solution is q̄nL when discretized

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:877–903
DOI: 10.1002/fld



884 C. W. SMITH, J. ZANG AND R. EATOCK TAYLOR

uniformly to L levels of refinement, the discretization error is given by enL ,disc= q̄nL − q̃n . The
perturbation error is that which arises from the truncation of the sequence of details and it is given
by enL ,pert=qnL − q̄nL . The error is therefore required to satisfy

‖qnL − q̃n‖�‖enL ,disc‖+‖enL ,pert‖�tol (19)

It is assumed that there exists an error estimate for enL ,disc, so that enL ,disc∼�x�
L , where �x L is the

cell size of the uniform grid at level L , and � is the order of the approximation. From this one
could determine L to ensure that �x�

L ∼ tol. If the perturbation error is introduced by discarding
details below the so far unspecified threshold �, the accuracy of the reference finite-volume scheme
is then maintained as long as the discretization and perturbation errors are of the same order:
‖enL ,disc‖∼‖enL ,pert‖. We may then characterize the required number of levels and the threshold by
L= L(tol,�) and �=�(L).

Cohen et al. [11] defined � to be a vector, e, with a different value � j for thresholding the details
d j,k at each level, given by

� j =2( j−L)ε (20)

with ε a constant parameter. Using Equation (20), these authors show that it is possible to write
an estimate for the error at time step n as

‖enL ,pert‖�Cnε (21)

where C is a constant. The accuracy of the multiscale finite-volume scheme remains that of
the reference finite-volume scheme, enL ,disc, i.e. of order �, providing ε is sufficiently small that
Cnε∼�x�

L .

2.3. Prediction of grid at the next time step

With the scheme described so far, the representation is valid at the time step for which the multiscale
transformation with associated threshold is performed but it does not imply that the grid will remain
valid for the following time step. A prediction of the grid required at the following time step must
be made using the information available at the current time step. Harten [8, 9] introduced a strategy
to predict such a grid for hyperbolic conservation laws. He assumed that the speed of propagation
is finite and that information concerning the grid moves according to characteristic speeds. In that
case each thresholded detail, d j,k , (and therefore grid cell) has a range of influence extending one
grid cell in all directions assuming that the time step is limited by a Courant number condition,
dependent on the cell size and the characteristic speeds. Harten also assumed that discontinuities
may develop in the solution and, hence, all the grid cells must be further refined by one level.
According to Harten’s strategy, the predicted grid at the next time step consists of:

1. All cells in the current grid.
2. Refined cells at a level higher than those containing a significant detail: i.e. a detail greater

than the threshold (|d j,k |�� j ).
3. Refined cells adjacent to that containing a significant detail.

This is best illustrated by Figure 2, where grid cells that contain significant details are shaded. All
such cells are refined, as well as cells adjacent to those containing significant details. The finest
grid cells denote the maximum number of refinement levels for this grid.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:877–903
DOI: 10.1002/fld



WAVELET-BASED ADAPTIVE GRIDS 885

Grid at time step n. 
Shaded cells contain detail 
coefficients greater than 
threshold

Predicted grid at time step n + 1
Dashed lines indicate new 
refinement

Figure 2. Harten’s strategy to predict the grid at the next time step.

For the prediction to be reliable, the grid should contain the significant details on the current
time step, n, as well as all of the significant details that would be determined by a multiscale
decomposition of the function at time step n+1, otherwise unnecessary numerical diffusion would
occur with features resolved on a grid that is too coarse, and the error analysis referred to above
would be invalid. Harten’s strategy has not been proved to guarantee that reliability of prediction,
and Cohen et al. [11] note that there are pathological situations where the prediction fails. Cohen
et al. have described an alternative scheme for which the reliability condition has been proved. They
found, however, that their scheme was too severe and costly computationally. For their numerical
example, they used Harten’s prediction strategy. We too have used Harten’s scheme for the cases
considered below.

2.4. Inverse multiscale transform

Having determined the grid for the next time step it is necessary to perform the inverse multiscale
transform to recover the cell-average-based representation necessary for the flux calculation and
time integration. This is a straightforward operation using the two-scale recurrence relations in
Equation (12). Since the wavelet operators are orthonormal, the inverse matrix for a two-level
transformation is simply its transpose. The approximation to the function q at the finest level, L ,
can thus be recovered by successively applying the inverse transform, as shown in the following
schematic diagram

q0 → q1 → . . . → q j → . . . → qL−1 → qL

↗ ↗ ↗ ↗ ↗ ↗
d0 d1 . . . d j . . . dL−1

An approximation in the top row is reconstructed using the approximation from the previous level,
plus the detail in the bottom row. This process continues until there is either no more detail to add,
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since the approximation is at the highest level, L , or the value of the detail coefficient is zero, in
which case there are no further refinements for that cell.

2.5. Calculation of fluxes and time integration

Carrying out the inverse multiscale transform results in a series of cell averages at different,
threshold-dependent resolutions. Using these cell values the solution at the next time step is
calculated. Considering a general conservation law, represented by a vector function, q, we take

qt + f (q)x =0 (22)

where details of the particular conservation laws used for q are given in Section 3. Following the
usual finite-volume approach, one can then integrate over a cell, using the divergence theorem, to
give ∫

V
qt dv+

∫
S
f (q)ds=0 (23)

which, when approximated in the manner of the standard Godunov scheme [21] yields

qn+1
i =qni − �t

�xi
( f (qni+1/2)− f (qni−1/2)) (24)

for each cell, i , where the values of q at the cell boundaries at time step n are give by qni+1/2
and qni−1/2. To find these values, we solve a Riemann problem (see, for example, [22, 23]) at the
boundary, using the cell averages as the initial conditions. The Riemann problem corresponds to
the conservation law, Equation (22), with the initial conditions

q=
{
qL, x<0

qR, x>0
(25)

where x is here a coordinate relative to an origin at the cell boundary and superscripts L and R
designate the left- and right-hand values, respectively. The solution to this problem is constant
along rays of x/t=constant, and the cell-boundary value required is the solution along the ray
x/t=0. It is computationally expensive to solve the full Riemann problem, especially since only
the solution along the ray x/t=0 is used in the finite-volume computation. Instead, an approximate
solution can be obtained using either Roe linearization or the HLLEC method. Details of these
methods can be found in [23].

For greater accuracy, higher-order methods can be employed based on reconstructed cell gradi-
ents using local cell averages. Using these, methods can be obtained that are formally second-order
accurate. As shown by Godunov [21], however, all finite-volume schemes that are linearly second-
order accurate and higher produce non-physical oscillations in the solution around discontinuities.
To overcome this problem, total variation diminishing schemes have been developed [24] that
combine second-order-accurate, piecewise-linear reconstructions of the cell data in areas where
the solution is smooth, with first-order, piecewise-constant reconstructions around discontinuities.
This switching between first- and second-order schemes is carried out by using slope limiters.

The particular finite-volume scheme used in the present implementation, the MUSCL-Hancock
method (see, for example, [23]), consists of the following steps. First, the so-called ‘slope-limited’
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gradient, �, is calculated in each cell i by comparing the gradients obtained from forward and
backward differences using adjacent cells:

ri =minmod((qi+1−qi )/�xi+1/2, (qi −qi−1)/�xi−1/2) (26)

where �xi+1/2=(�xi +�xi+1)/2 and the slope-limiter function, minmod, is given by

minmod(a,b)= 1
2 (sign(a)+sign(b))min(abs(a),abs(b)) (27)

This returns the minimum of the two slopes, unless the cell is at a maximum or minimum, in
which case the function returns to 0. The limited slope is then used to extrapolate the function qi
to the cell boundaries, as follows:

qRi = qi + �xi
2
ri

qLi = qi − �xi
2
ri

(28)

Using Equations (24) and (28), the Hancock predictor step updates the extrapolated cell-boundary
values to the midpoint of the time step, �t/2:

q̄Ri = qRi − �t

2�xi
( f (qRi )− f (qLi ))

q̄Li = qLi − �t

2�xi
( f (qRi )− f (qLi ))

(29)

The final update step to the solution at n+1 is computed by

qn+1
i =qni − �t

�xi
( f (q↓

i+1/2)− f (q↓
i−1/2)) (30)

where q↓
i+1/2 is the approximate solution to the Riemann problem at the boundary between cells

i and i+1, with left- and right-hand input conditions q̄Ri and q̄Li+1, respectively.
The cell averages are then decomposed again into an approximation and a series of detail

coefficients and the first stage begin again at the new time step. The adaptive multiscale finite-
volume scheme therefore achieves the same order of accuracy as the reference finite-volume
scheme on a uniform, high-resolution grid, provided the strategy for predicting the grid for the
following time step, outlined in Section 2.3, holds. The suitability of this prediction strategy and
the associated claim for the error bound are explored in Section 3, along with the applicability of
such a scheme to hydrodynamics problems.

3. APPLICATIONS

In order to determine the effectiveness of the scheme, four different cases have been considered
as follows: a dam-break problem, using the shallow water equations; an interacting blast-wave
problem; solitary-wave reflection; propagation of a solitary wave over a steep step. These permit
comparisons to be made with other published solutions and convergence of the methodology to
be investigated. The first two cases are examples of standard hyperbolic problems and the others
are based on modelling solitary waves with the Boussinesq equations.
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Figure 3. Solution to dam-break problem, comparison with numerical results.

3.1. Hyperbolic problems

3.1.1. Dam-break problem. The dam-break problem is a standard test case for many finite-volume
schemes. The governing equations for the problem are the one-dimensional shallow water equations,
given by [

h

hu

]
t

+
[

hu

hu2+ 1
2gh

2

]
x

=0 (31)

where h is the water height, u is the velocity of the water and g is the acceleration due to gravity.
As a problem it is sufficiently simple that the exact solution can be calculated (e.g. [22]) and it
is therefore of use for comparison purposes. The initial state consists of two regions of constant
height, separated by a discontinuity. The water is initially still, the bed is flat and frictionless and
the initial conditions are specified as

x<0.5m, x�0.5m

h=1m, h=0.5m

u=0ms−1, u=0ms−1

The initial discontinuity is thus positioned at x=0.5m, in a domain length of 1m. The solution to
the dam-break problem, as assuming h>0m throughout, consists of a right-travelling shock wave
and a left-travelling rarefaction wave. Figure 3 compares the exact solution, originally found by
Stoker [25] with example numerical computations. In these, L , the number of refinement levels is
equal to 5, and ε, the threshold parameter defined in Equation (20), is equal to 10−3, 10−5 and 0,
with this last case corresponding to the uniform grid. It can be seen that the computed numerical
results appear to lie over each other. This would suggest that, over the range of ε shown, ε does not
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Figure 4. Dam-break problem: normed error against mean cell size.

strongly affect the accuracy of the solution. The relationship between ε and the accuracy is further
explored in Figure 4. The error, defined here as the normed proportional difference between the
approximate solution and the exact solution, is plotted against the mean number of grid cells per
time step over the course of each computation. Results were computed for L=(3,4,5,6,7) with
the threshold parameter ε=(10−1,10−2,10−3,10−4,10−5,0). Larger values of ε result in less cell
refinement and therefore fewer grid cells. For each L line, the left-most point corresponds to ε=0
and the right-most point corresponds to ε=10−1.

Figure 4 shows that, starting from the results with the largest value of ε and the fewest grid cells,
there is an initial gradient. As ε decreases, however, and the mean number of grid cells increases,
there is a rapid change in the slope. Below a certain value of ε, further reduction has little effect
on the accuracy. For example, comparing the case L=7,ε=10−3 with L=7,ε=0, the adaptive
grid uses 7 times fewer grid cells for an improvement in accuracy of just 5%. It can be seen
that, for the uniform-grid cases, the left-most points on each L line, the gradient is approximately
equal to 1 and so the overall scheme exhibits first-order convergence. This is not surprising since
most of the solution is flat with just a small region with a large discontinuity, where most of the
error arises. In this region the slope limiter adds numerical viscosity to prevent oscillations and
the scheme is first-order locally.

Figure 5 shows an example grid in the x–t plane for the case L=4,ε=10−2. Contours of
wave height are plotted on top (shown in bold). It can be seen that the right-travelling shock wave
maintains a sharp front in the adaptive grid and the grid refines automatically over this and the
spreading rarefaction wave.

3.1.2. Interacting blast-wave problem. The interacting blast-wave problem was introduced by
Colella and Woodward [19] to test a selection of numerical codes. The governing equations in
this case are the Euler equations, given by the following equation, where � is the density, u is the
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Figure 5. Dam-break problem: x–t representation of adaptive grid for L=4, ε=10−2.

velocity, E is the internal energy and p is the pressure:

⎡
⎢⎣

�

�u

E

⎤
⎥⎦
t

+

⎡
⎢⎢⎣

�u

�u2+ p

(E+ p)u

⎤
⎥⎥⎦
x

=0 (32)

The energy is given by

E= p

�−1
+ 1

2
�u2 (33)

The gas is assumed to be ideal and the ratio of specific heats, �, equal to 1.4. The Euler equations
are used to model a 1m-long, gas-filled shock tube with sealed ends. Two discontinuities exist in
the initial conditions, at x=0.1 and 0.9m. p, � and u are as prescribed:

0�x�0.1, 0.1<x�0.9, 0.9<x�1

p=1000Pa, p=0.01Pa, p=100Pa

�=1kgm−3, �=1kgm−3, �=1kgm−3

u=0ms−1, u=0ms−1, u=0ms−1

The pressure ratios in neighbouring regions are 100 000 and 10 000. These lead to very strong
shock waves travelling towards the centre of the tube. Rarefaction waves travel away towards the
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Figure 6. Interacting blast problem: spatial plots at t=0.038s.

end walls initially, before reflecting back towards the tube centre to interact with the other waves.
This is a difficult test problem as the wave interactions are complex and there is a large spike in
pressure at the point where the two shock waves meet. Riemann solvers based on linearization, such
as Roe’s method, typically have difficulties with such a feature, predicting a negative density for
the Riemann state. There is no analytical solution for this problem but, because of its difficulties,
it is a commonly used case for testing codes (for example, [26]). It is used here chiefly because of
the complex wave patterns present in the solution, and the contrast in the solution between smooth
regions and sharp discontinuities.

The numerical model was run for maximum refinement levels L between 2 and 7, with values
of ε=(10−2,10−3,10−4,10−5,10−6,10−7,10−8,10−9,0). Solutions are usually compared at t=
0.038s, shortly after the shock waves have interacted. Figure 6 shows the distribution of density
along the tube for three cases with L=6, ε=10−2,10−4, compared with the solution on a uniform
grid at L=6 and 8. The two different threshold values have a significant effect on the solution at
t=0.038s. However, even at L=6 with ε=10−2, most of the features in the solution are apparent:
the steps at x=0.6 and 0.8; the region between the two peaks and the peaks themselves. Since
there is no exact solution to this problem and, as Colella and Woodward found [19], the order of
convergence for the scheme can be at most 1, it was decided to use the solution on the uniform
grid at L=8 to calculate the errors.

Figure 7 plots the error, defined here as the normed proportional difference between each solution
and the uniform-grid solution at L=8 for the different maximum refinement levels and threshold
values. It can be seen that the adaptive grid cases, where ε>0, produce errors very close to those
of the uniform-grid case. For the case L=7, the same accuracy is obtained for ε=10−3 as for
ε=0, suggesting that the error bound of Equations (19) and (21) holds. For ε=10−3, a quarter of
the number of grid cells is used over the computation, thus taking a quarter of the time.

These results can be compared favourably with those of Toro [26]. Figure 8 shows the density,
velocity, pressure and internal energy for the case L=8, ε=10−4 at t=0.028s. Over the course of
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Figure 7. Interacting blast problem: normed error against mean cell size.
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Figure 8. Interacting blast problem: density, velocity, pressure and internal
energy at t=0.028s for L=8, ε=10−4.

this computation, an average of 658 cells were used per time step, compared with 3000 in [26]. The
density spike of approximately 25kgm−3 in Figure 8 is sharper and higher than that of Toro [26],
though lower than that of Colella and Woodward’s [19] reference piecewise-parabolic method
using 4000 grid cells; they obtained a density spike of approximately 28kgm−3.
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Figure 9 plots contours of the density in the x–t plane over a representation of the adaptive grid
over the course of the computation. It can be seen that the adaptive grid is effective at tracking
the solution, with the grid refining automatically over the shocks and rarefactions.

3.2. Solitary-wave test cases using Boussinesq equations

The following test cases extend application of the adaptive multiscale one-dimensional scheme
to the Boussinesq equations. These equations contain source terms, and feature a correction step
where an elliptic equation is solved. In this respect the problem is similar to the Euler equations for
incompressible flow where, in order to calculate the pressure, Poisson’s equation must be solved.
The specific Boussinesq equation set used is a finite-volume formulation of Madsen and Sørensen’s
Boussinesq equations [27]. The equations are described briefly below and further details of the
derivation can be found in [28]. The hyperbolic equations used in the finite-volume stage are
expressed as follows, in terms of variables defined below:

	t +Px =0 (34)

P̃t +
[
P2

d
+ 1

2
g(	2+2	h)

]
x
=g	hx +Bgh3	xxx +2Bgh2hx	xx (35)

The water level, h, now represents the depth to the mean water line.‡ 	 represents the surface eleva-
tion above the mean water line and P represents the momentum, given by P=u(	+h). As before,
u is the velocity. The constant B originates from one of the coefficients of the Padé approximants

‡As one of the example test cases involves a non-uniform bathymetry, h cannot be used to represent the total water
height, unlike in the dam-break problem.
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which model the dispersion relationship: its value is taken here to be 1
15 . P̃ is a ‘transformed’

version of P , created by transferring the time–space cross-derivatives from Madsen and Sørensen’s
formulation to the left-hand side of the equation. The transformation, A, is defined by

P̃ = P−
(
B+ 1

3

)
h2Pxx − 1

3
hhx Px

=
(
I −

(
B+ 1

3

)
h2

�2

�x2
− 1

3
hhx

�
�x

)
P

= AP (36)

To solve the equations, the variables, 	 and P , are combined in the vector q:

q=
[

	

P

]
, q̃=

[
	

P̃

]

and the source term vector is constructed using the right-hand side terms of Equations (34) and (35):

S=
[

0

g	hx +Bgh3	xxx +2Bgh2hx	xx

]
(37)

For second-order accuracy, a second-order Runge–Kutta scheme, evaluating in cell i at time step
n, is used to give a four-stage scheme:

1. q̃n+1/2
i = q̃ni − �t

2�x ( f (qni+1/2)− f (qni−1/2))+ �t
2 Sni

2. Pn+1/2= A−1 P̃n+1/2

3. q̃n+1
i = q̃ni − �t

�x ( f (qn+1/2
i+1/2 )− f (qn+1/2

i−1/2 ))+�t Sn+1/2
i

4. Pn+1= A−1 P̃n+1

To calculate the second- and third-order derivatives that occur in the source terms S and in the
operator A in the elliptic correction (stages 2 and 4 above), second-order explicit finite difference
approximations suitable for a non-uniform grid were used, determined by matching Taylor series
coefficients to eliminate sufficient truncation error for the desired order of accuracy. Evaluation of
the elliptic correction stages involves solution of a large system of simultaneous equations.

3.2.1. Solitary-wave reflection. In this test case, solitary waves of heights 0.10, 0.20, 0.30 and
0.40m propagate in water at a constant depth of h=1m until the waves reach a wall, from which
they are reflected back. The domain length is 30m and the solitary waves are initially centred at
x=10m. A diagram of the initial set-up is shown in Figure 10. The initial height distribution, as
given by Laitone [29], is

	0(x)

h
= a0

h
sech(�X)2− 3

4

(a0
h

)2
sech(�X)2(1−sech(�X)2) (38)

where a0 is the prescribed initial wave amplitude and

�X = x

h

(
3a0
4h

)1/2(
1− 5a0

8h

)
(39)
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Figure 10. Solitary-wave reflection case: initial wave profile.

The initial velocity is given by

u(∞)√
gh

=1+ 1

2

a0
h

− 3

20

(a0
h

)2
(40)

Applying the adaptive grid, instability was encountered for the cases L=8, 9, ε>0 and for
L=7,ε>10−4 (Figure 11). For the cases presented here, a Courant number of C=0.6 has been
used; at these higher resolutions the scheme was unstable even with a Courant number of 0.06.
The effect of even smaller time steps was explored on smaller test problems using a reduced
spatial domain (for reasons of speed) and the scheme was unstable even for C=0.006 at these
resolutions. The scheme nevertheless remained stable for the uniform-grid case. The cause of the
instability was traced to the third derivative in the source term, shown in Equation (37). Replacing
the original five-point centred finite difference expression with a seven-point expression was also
unsuccessful. Stability problems for dispersive waves were also encountered in finite difference
schemes by Garcia-Archilla [30] and by Saucez et al. [31] for the Korteweg–de Vries equation; in
these cases the instability was caused by the discretization of the third derivative. It is not possible
to implement a stable, implicit finite difference stage for the source terms as S is not a function of
P—the surface elevation and momentum are decoupled. Garcia-Archilla [30] and Garcia-Archilla
and Sanz-Serna [32] present a finite difference scheme to calculate the third derivative for the
Korteweg–de Vries equation on a non-uniform grid. However, their scheme is only suitable for
grids having periodic boundary conditions and with an odd number of cells; on grids with an even
number of cells the truncation errors do not decrease with cell size. This is not appropriate for the
adaptive scheme considered here. It was decided therefore to consider only the stable results and
hence ε=10−5 was used.

Figure 12 plots the run-up at the wall, R, divided by the initial amplitude against normal-
ized initial amplitude. The line R/a0=2 represents linear superposition. A non-linear interaction
component can clearly be seen as the ratio R/a0 increases with amplitude. We first consider the
results from the uniform-grid cases. Richardson extrapolation was applied to the calculated results,
showing that convergence had been obtained. Also plotted on this graph are the results for L=5, 6
and 7 with ε=10−5, for where computations the scheme was stable. The run-up values calculated
from these adaptive computations approach those for the uniform grid.

3.2.2. Propagation of a solitary wave over a steep step. It was found by Madsen and Mei [33]
that when a solitary wave travels over a step into shallower water, fission can occur. The solitary
wave breaks down, leaving a number of solitary waves, usually with a small oscillatory tail. Both
Tappert and Zabusky [34] and Johnson [35] use the Korteweg–de Vries equation to show that the
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Figure 11. Example of solitary reflection at wall for L=7, ε=10−3 for a0/h=0.1.
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number of waves produced depends on the ratio of depths, and they also give an expression for
the amplitudes of the fission solitary waves, in the form of amplification factors, Am . The number
of solitary waves formed, p, is found from

h1
h0

=
(
p(p+1)

2

)−4/9

(41)
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Figure 13. Madsen and Mei experiment—gauge positions and bathymetry. Coordinates of
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where h1/h0 is the ratio of water depths, in this case 0.5. To predict the amplitudes of the fission
solitary waves, the amplification factors are given by

Am = 2a0(�+m)2

p(p+1)
(42)

where �=1+ p−N and N is the largest integer satisfying N�p+1. The � term allows for the fact
that Equation (41) will not typically produce an integer number of solitary waves; in these cases
the oscillatory tail is formed. For h1/h0=0.5, three solitary waves are formed, with amplification
factors A1=1.722, A2=0.660 and A3=0.100.

Madsen and Mei [33] performed a series of experiments exploring this phenomenon. The
bathymetry used in these experiments is shown in Figure 13, with positions relative to an origin to
the left of the region shown. The coordinates (in metres) of the gauge positions and slope discon-
tinuity locations, p, q , r , s and t are (3,0), (3.4064,0), (4.1684,0.009144), (5.0574,0.009144)
and (5.921,0.009144), respectively; in the experiments, imperial measurements were used, with
an initial water depth, h0, of 3 in (0.0762m).

The initial amplitude was taken as 	0/h0=0.12. From Equations (41) and (42), this gives relative
amplitudes after fission of 	1/h0=0.207, 	2/h0=0.0792 and 	3/h0=0.0117, which compare
favourably with results of the Korteweg–de Vries equations computed from a numerical model
in [33], but not with the experimental results. The solitary-wave experiments of Madsen and
Mei [33] are, therefore, suitable for comparison with the results from the scheme described in the
present paper, as there exist physical results and an analytical solution with which to compare,
though the latter is for the Korteweg–de Vries equation rather than the Boussinesq equations. The
case was run for L , the number of refinement levels, equal to 5, 6, 7, 8, 9 and 10 with ε, the
threshold parameter, set to 10−1,10−2,10−3,10−5 and 0.

Instability was encountered for the cases L=9,ε=10−1,10−2,10−3 and for all values of ε>0
at L=10 and above. Just as for the solitary-wave reflection case in Section 3.2.1, the instability
was caused by the third derivative discretization on the non-uniform grid. It was decided therefore
to consider only the stable results and, hence, for comparison with experimental data, ε=10−5

was used.
Three time histories are plotted in Figure 14 for these parameters, showing the elevation at three

of the gauge positions used by Madsen and Mei [33]. At gauge position ‘b’ the solitary wave had
begun to deform and is no longer symmetrical. Owing to shoaling, the amplitude is larger than
the initial value of 	0/h0=0.12. At gauge position ‘c’ a point of inflection is clear as the largest
of the fission waves begins to separate and at gauge position ‘d’ the separation into fission waves
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Figure 14. Madsen and Mei case: surface elevation time histories.

is even more apparent. For all but the L=6 case, the solutions resolve the wave separation with
some clarity. The results for L=9 and 8 overlie each other for the first two gauges and remain
closed for gauge ‘d’, suggesting a degree of convergence.

Table I gives the amplitudes of the largest fission solitary waves at gauge ‘d’ for four different
values of L .

Undertaking Richardson extrapolation using the results for L=8 and 9, with ε=10−5, the
converged amplitude is 0.1685. Using this converged value, Figure 15 plots the error at gauge ‘d’
for the stable cases studied. As before, the adaptive grid gives results as accurate as those on the
uniform grid, but using far fewer grid cells; for the case of L=8, the same accuracy is obtained
using one-seventh the number of grid cells.
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Table I. Computed amplitudes of largest fission solitary
waves at gauge ‘d’ for differing maximum resolutions.

L 	1/h0

6 0.1333
7 0.1593
8 0.1659
9 0.1678
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Figure 15. Madsen and Mei case: error at gauge ‘d’ against mean cell size (stable cases only).

The converged value of the amplitude at gauge ‘d’ is significantly below the analytically deter-
mined value above, 0.207. However, since the latter has been obtained from the solution of the
Korteweg–de Vries equation, it is unsurprising that a discrepancy such as this might be found.
In particular, one can note an important difference between the models: the Korteweg–de Vries
equation admits solutions travelling in just one direction, whereas the Boussinesq equations can
admit both left- and right-travelling waves and as such are able to model the reflected wave from
the step. Peregrine [36] shows that the reflected wave is of almost constant height, with a length
approximately equal to twice the horizontally projected length of the slope, 1.52m in this case.
Peregrine also gives an expression for calculating the reflected wave height, 	ref, in terms of the
bed slope, � and the initial amplitude 	0 relative to the depth h0:

	ref
h0

= 1

2
�

(
1

3

	0
h0

)1/2

(43)

For the case of �= 1
20 and 	0/h0=0.12, this equation gives 	ref/h0=0.005. As can be seen in

the spatial profile in Figure 16, for the computed case L=9,ε=10−5, the relative height of the
reflected wave varied across its length between 0.005 and 0.006 and the length of the reflected
wave was approximately 1.5m. This could feasibly account for at least part of the difference in
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Figure 16. Madsen and Mei case: spatial plot at t=5s showing wave reflected from step (L=9, ε=10−5).
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Figure 17. Madsen and Mei case: adaptive grid (L=6,ε=10−3) with overlain contour
plot of 	/h0. Contours shown are 0.0025, 0.0525 and 0.1025. Positions of gauges ‘a’, ‘b’

‘c’ and ‘d’ are shown for reference.

height between the Korteweg–de Vries analytical solutions and the computed results presented
here.

As Madsen and Mei [33] note, for the water depth considered here, friction has a significant
effect. To account for the friction in comparing their own computed results with the experimental
data, Madsen and Mei make use of the experimental results of Ippen et al. [37] and an empirical

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:877–903
DOI: 10.1002/fld



WAVELET-BASED ADAPTIVE GRIDS 901

formula for viscous wave attenuation given therein. Using this, Madsen and Mei estimate the
undamped relative wave height to be approximately 0.16, in good agreement with results presented
here, and a considerable improvement on the Korteweg–de Vries-derived analytical results.

An example grid for this case is shown in Figure 17, where the positions of gauges ‘a’, ‘b’,
‘c’ and ‘d’ are marked. It can be seen the grid adapts smoothly to this case, resolving the wave
reflected from the step as well as the transmitted waves. Contours of wave elevation are overlain,
indicating how the grid has adapted in regimes of rapid change.

4. CONCLUSIONS

The adaptive finite-volume scheme described in Section 2 has been investigated using four cases
presented in Section 3. In the first two cases, the dam break using the shallow water equations
and the interacting blast-wave problem using the Euler equations, the accuracy of the scheme
was explored for a range of different values of L , the number of refinement levels, and, ε, the
threshold parameter. It was seen that an accuracy equivalent to that of the uniform grid could be
obtained using the adaptive grid, thereby using far fewer grid cells. In the dam-break problem,
for some combinations the uniform-grid accuracy could be obtained using 7 times fewer cells.
For the interacting blast-wave problem, the factor was 4. We have thus demonstrated that, for
these problems, the adaptive multiscale scheme, as originally presented by Cohen et al. [11] and
detailed further by Müller [15], can produce accurate and reliable results using fewer grid cells
and therefore taking much less time than for a uniform grid at the finest resolution.

Results were also presented for the adaptive solution of a finite-volume formulation of the
Madsen and Sørensen Boussinesq equations. The cases considered were a reflection of a solitary
wave by a wall, and propagation of a solitary wave by a step. These have highly localized flow
features, which means that large regions can be modelled at low resolution and can therefore
take advantage of the adaptive multiscale scheme. Again it was found that results converged onto
those obtained from a uniform grid, but using far fewer cells. In these cases, however, instabilities
were encountered when very fine resolutions were adopted. These appear to be associated with
the treatment of the third spatial derivative in Equation (37) when using a non-uniform grid.
Instabilities did not arise in the uniform-grid implementation. We can conclude that there are
potential limitations in the application of the present approach to the particular form of Boussinesq
equations used here. No such difficulties have been identified in using the proposed method for
solving the shallow water or Euler equations in one spatial dimension, and it seems reasonable
to infer that such problems in two dimensions could also be satisfactorily resolved using this
wavelet-based approach.

Finally, we observe that the finite-volume formulation of the Boussinesq equations involved
the solution, at each time step, of a large system of matrix equations, analogous to the Poisson
equation for pressure used to model incompressible flow. The solution of these equations did not
increase the computational burden significantly, and this, therefore, suggests that the simulation
of wave motion and diffraction using the incompressible Euler equations in two dimensions is
feasible using the present scheme.
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